Predictive distributions for between-study heterogeneity and simple methods for their application in Bayesian meta-analysis

نویسندگان

  • Rebecca M Turner
  • Dan Jackson
  • Yinghui Wei
  • Simon G Thompson
  • Julian P T Higgins
چکیده

Numerous meta-analyses in healthcare research combine results from only a small number of studies, for which the variance representing between-study heterogeneity is estimated imprecisely. A Bayesian approach to estimation allows external evidence on the expected magnitude of heterogeneity to be incorporated. The aim of this paper is to provide tools that improve the accessibility of Bayesian meta-analysis. We present two methods for implementing Bayesian meta-analysis, using numerical integration and importance sampling techniques. Based on 14,886 binary outcome meta-analyses in the Cochrane Database of Systematic Reviews, we derive a novel set of predictive distributions for the degree of heterogeneity expected in 80 settings depending on the outcomes assessed and comparisons made. These can be used as prior distributions for heterogeneity in future meta-analyses. The two methods are implemented in R, for which code is provided. Both methods produce equivalent results to standard but more complex Markov chain Monte Carlo approaches. The priors are derived as log-normal distributions for the between-study variance, applicable to meta-analyses of binary outcomes on the log odds-ratio scale. The methods are applied to two example meta-analyses, incorporating the relevant predictive distributions as prior distributions for between-study heterogeneity. We have provided resources to facilitate Bayesian meta-analysis, in a form accessible to applied researchers, which allow relevant prior information on the degree of heterogeneity to be incorporated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implementing informative priors for heterogeneity in meta‐analysis using meta‐regression and pseudo data

Many meta-analyses combine results from only a small number of studies, a situation in which the between-study variance is imprecisely estimated when standard methods are applied. Bayesian meta-analysis allows incorporation of external evidence on heterogeneity, providing the potential for more robust inference on the effect size of interest. We present a method for performing Bayesian meta-ana...

متن کامل

Predicting the extent of heterogeneity in meta-analysis, using empirical data from the Cochrane Database of Systematic Reviews

BACKGROUND Many meta-analyses contain only a small number of studies, which makes it difficult to estimate the extent of between-study heterogeneity. Bayesian meta-analysis allows incorporation of external evidence on heterogeneity, and offers advantages over conventional random-effects meta-analysis. To assist in this, we provide empirical evidence on the likely extent of heterogeneity in part...

متن کامل

Predictive distributions were developed for the extent of heterogeneity in meta-analyses of continuous outcome data

OBJECTIVES Estimation of between-study heterogeneity is problematic in small meta-analyses. Bayesian meta-analysis is beneficial because it allows incorporation of external evidence on heterogeneity. To facilitate this, we provide empirical evidence on the likely heterogeneity between studies in meta-analyses relating to specific research settings. STUDY DESIGN AND SETTING Our analyses includ...

متن کامل

Empirical evidence about inconsistency among studies in a pair‐wise meta‐analysis

This paper investigates how inconsistency (as measured by the I2 statistic) among studies in a meta-analysis may differ, according to the type of outcome data and effect measure. We used hierarchical models to analyse data from 3873 binary, 5132 continuous and 880 mixed outcome meta-analyses within the Cochrane Database of Systematic Reviews. Predictive distributions for inconsistency expected ...

متن کامل

The Family of Scale-Mixture of Skew-Normal Distributions and Its Application in Bayesian Nonlinear Regression Models

In previous studies on fitting non-linear regression models with the symmetric structure the normality is usually assumed in the analysis of data. This choice may be inappropriate when the distribution of residual terms is asymmetric. Recently, the family of scale-mixture of skew-normal distributions is the main concern of many researchers. This family includes several skewed and heavy-tailed d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2015